Калужский филиал ПГУПС

А.В. Сосков

Методические указания к выполнению практических занятий по МДК 01.02 Тема 2.5 Основы локомотивной тяги для студентов специальности 23.02.06 Техническая эксплуатация подвижного состава железных дорог

Расчёт силы тяги по сцеплению при различных скоростях на прямом участке и в кривых.

Цель занятия: Научиться рассчитывать силу тяги по сцеплению при различных скоростях на прямом участке и в кривых.

исходные данные:	
	_
	_
	_

Порядок выполнения занятия:

1. Рассчитать коэффициент сцепления локомотива по формуле:

$$\Psi_{\kappa} = 0,28 + \frac{4}{50 + 6 \cdot V} - 0,0006 \cdot V$$

при скоростях: 0, 5, 10, 20, 30, 40, 50, 60 км/ч.

Результаты расчётов $\Psi_{\kappa,\kappa p}$ округляем до трёх значащих цифр, сводим в таблицу 1.1.

2. Рассчитать силу тяги $F_{\kappa,cu}$ по формуле, при скоростях: 0, 5, 10, 20, 30, 40, 50, 60 км/ч.

$$F_{\kappa.cu.} = 1000 \cdot m_{_{\pi}} \cdot g \cdot \psi_{_{\kappa.}}$$

результаты расчетов $F_{\kappa,cu}$ с округлением до 1 кН сводим в таблицу 1.1. По полученным данным строим график $F_{\kappa,cu}(V)$.

Изм.	Лист	№ докум.	Подпись	Дата	

3. Рассчитываем коэффициент сцепления в кривой радиусом R= ______м, при скоростях: 0, 5, 10, 20, 30, 40, 50, 60 км/ч., по формуле:

$$\Psi_{\kappa,\kappa p} = \Psi_{\kappa} \cdot \frac{250 + 1,55R}{500 + 1.1R},$$

определить отношение $\Psi_{\kappa,\kappa p}$ в кривой, полученные значения внести в таблицу 1.1.

4. Рассчитать силу тяги по сцеплению в кривой R= _____ м, при скоростях: 0, 5, 10, 20, 30, 40, 50, 60 км/ч.

$$F_{\kappa,cu,\kappa p} = 1000 \cdot m_{_{\mathcal{I}}} \cdot g \cdot \Psi_{\kappa,\kappa p},$$

Таблица 1.1

V, км/ч	ψ_{κ}	$F_{\kappa.c.y.}$	$\psi_{\kappa.\kappa p.}$	$F_{\kappa.c.y.\kappa p.}$
1	2	3	4	5
0				
5				
10				
20				
30				
40				
50				
60				

Ход занятия:

Формулы и порядок расчётов брать из учебника С.И Осипов, С.С. Осипов «Основы тяги поездов» 2000 года издания.Стр.20-21

				ПЗ.МДК.01.0
Изм.	Лист	№ докум.	Подпись Дата	

Определение скоростных и электротяговых характеристик тягового электродвигателя при различных диаметрах колёсных пар и передаточного отношения зубчатых колёс.

Цель занятия: Научиться определять скоростные и электротяговые характеристики тягового электродвигателя при различных диаметрах колёсных пар и передаточного отношения зубчатых колёс.

Исходные данні	ые:		

Порядок выполнения занятия:

- 1. По скоростным электротяговым характеристикам ТЭД находим значения V_1 и $F_{\kappa g,1}$ при токах: 150, 200, 250, 300, 400, 480, 550, 600, 700, 800 А и заносим их в графы 2 и 3 таблицы 2.1.
 - **2.** Выбираем скорость V, для каждого значения тока I_q и по формуле:

$$V_2 = \frac{D_2}{D_1} \cdot \frac{M_1}{M_2} \cdot V_1,$$

определяем скорость V_2 при тех же значениях тока, по изменённым диаметре колеса и передаточного числа зубчатой передачи. Полученные результаты заносим в графу 4 таблицы 2.1.

Изм.	Лист	№ докум.	Подпись	Дата

3. Рассчитываем силу тяги для измененного диаметра колеса и передаточного отношения при всех значениях тока I_q . Результаты заносим в таблицу 2.1 с округлением до 100 H.

$$F_{\text{KZ}2} = \frac{D_1}{D_2} \cdot \frac{\mu_2}{\mu_1} F_{\text{KZ}1}.$$

4. По данным граф 1,3 и 5 построить кривые $V_2(I_q), F_{\kappa g2}(I_q)$.

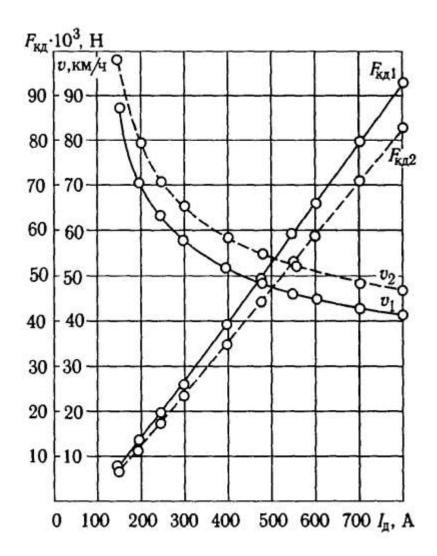


Рис. 2.1 Скоростные и электротяговые характеристики тягового электродвигателя при различных μ и D (сплошные линии – при D_1 =1250мм и μ_1 = 3,826; штриховые – при D_2 =1200мм и μ_2 = 3,26)

					П3.М
Изм.	Лист	№ докум.	Подпись	Дата	,

Таблица 2.1

Ток <i>Ід,А</i>	Заданные значения		Полученны	е значения
	V1,км/ч	Г кд 1,Н	V ₂ ,км/ч	Г кд2, Н
1	2	3	4	5
150	87,5	8100		
200	70,6	14000		
250	63,9	20400		
300	58,0	26100		
400	52,2	39500		
480	48,7	49700		
550	46,7	59500		
600	45,4	66500		
700	43,6	80000		
800	41,8	93600		

Ход занятия:

Формулы и порядок расчётов брать из учебника С.И Осипов, С.С. Осипов
«Основы тяги поездов» 2000 года издания.

Изм.	Лист	№ докум.	Подпись	Дата

Спрямление и приведение профиля пути.

Цель: научиться выполнять спрямление и приведение профиля пути.

Исходные данные:		

Порядок выполнения занятия

Составляем таблицу по спрямлению пути (таблица 3.1).

Таблина 3.1

	Длина	Уклог		ивая	Длина	Спрям-	Фиктив-	Приве-	No	
№ элемента	элемента,	i_c , %		Длина $S_{\kappa p.}$, M	спрямлен- ного участка $S_c = \sum S_i$, м	лённый уклон	ный подъём от кривой $i_{C}^{"}$, ‰	дённый уклон $i_c = i_c' + i_c''$	спрям- лённого участка	Примечание
1	2	3	4	5	6	7	8	9	10	11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15										

Ход занятия::

Формулы и порядок расчётов брать из учебника С.И Осипов, С.С. Осипов «Основы тяги поездов» 2000 года издания. Стр. 173

							лист
					ПЗ.МДК.01.02.23.02.06.01.	.ПЗ.	
Изм.	Лист	№ докум.	Подпись	Дата			

Определение расчетной массы состава

Цель занятия:	Научиться	рассчитывать	и определять	массу состава
---------------	-----------	--------------	--------------	---------------

Исходные данные:		

Порядок выполнения занятия:

Определить массу состава, сформированного из груженных четырехосных вагонов на роликовых подшипниках массой 75 т каждый, при движении по звеньевому пути с установившейся скоростью на расчетном подъеме $i_p = 11\%$ о. Состав ведет тепловоз 2ТЭ10В, имеющий массу 276 т

Таблица 4.1

Серня локомотива	Режим рабо- ты на рас- четном подъ- еме	Расчетная сила тяги F_{sp} , кН	Расчетная скорость <i>v_p</i> , км/ч	Сила тяги при трогании с места F _{к эр} , кН	Конструкци- онная ско- рость и _{тах} , км/ч	Длина локо мотива l_{a^*}
ВЛ10, ВЛ11 (две секции)	n	451	46,7	614	100	33
ВЛ10У	П	492	45,8	667	100	33
ВЛ8	П, ОВ1	456	43,3	595	80	28
ВЛ23	П, ОВ1	342	43,3	446	100	17
$BJ122^M$ ($\mu = 4.45$)	П, ОВ1	336	36,8	379	75	16
ВЛ80 ^р	0,5 зоны 4 3-я зона	540 559	41,7 35,2	731	110	33
ВЛ80 ^с ВЛ80 ^т	29-я поз. 25-я поз.	501 512	43,5 37,2	677,8	110	33
ВЛ80 ^к	29-я поз. 25-я поз.	481 490	44,5 38,0	649,4	110	33
ВЛ60 ^к	29-я поз. 25-я поз.	361 369	43,5 37,0	487	100	21
ВЛ82, ВЛ82 ^м	П	465 487	51,0 50,5	640 667	110	33
2TЭ10B 2TЭ10M		496	23,4	797	100	34
2ТЭ10Л	-	496	23,4	750	100	34
2T3116	_	496	24,2	797	100	36
TЭ10	-	248	23,4	375	100	19
M62	-	196	20,0	350	100	18
ТЭ3		396*	20,5*	571	100	34

^{*} Для увеличения провозной способности для тепловозов ТЭЗ разрешается принимать $v_p = 19$ км/ч и $F_{\kappa p} = 424$ кН с последующей проверкой по нагреванию.

			·	
Изм.	Лист	№ докум.	Подпись	Дата

Решение:

- 1. Из таблицы 4.1 практического занятия для тепловоза 2ТЭ10В находим $F_{\kappa p}=496000 H$ и $v_p=23,4\kappa m/u$.
- 2. Определяем основное удельное сопротивление движению локомотива $\vec{w_0}$ по формуле:

$$\dot{w_0} = 1.9 + 0.01v + 0.0003v^2$$

3. Рассчитываем основное удельное сопротивление движению состава $\vec{w_0}$ по формуле:

$$\widetilde{w_0} = 0.7 + (3 + 0.1v + 0.0025v^2)/m_{eq};$$

4. Определяем массу состава m_c по формуле:

$$m_c = \frac{F_{kp} - (\hat{w_0} + i_p) \cdot m_{\pi} \cdot g}{(\hat{w_0} + i_p) \cdot g}.$$

Изм.	Лист	№ докум.	Подпись	Дата

Расчёт общего сопротивления движению поезда и построение кривой удельных замедляющих сил

Цель занятия: Научиться производить расчёт общего сопротивления движению поезда и строить кривую удельных замедляющих сил

Исходные данные:						

Порядок выполнения занятия:

Рассчитать общее удельное сопротивление движению поезда, состоящего из тепловоза 2ТЭ116, работающего в режиме тяги и имеющего массу 276 т, и состава массой 4000 т. Состав сформирован из четырехосных вагонов на роликовых подшипниках средней массой $m_{B4} = 70m$ и восьмиосных вагонов на роликовых подшипниках средней массой $m_{B8} = 160m$. В составе 70% четырехосных и 30% восьмиосных вагонов. Поезд движется по звеньевому пути со скоростями от 0 до конструкционной, равной 100 км/ч. Расчет произвести для движения по горизонтальному прямолинейному пути и на приведенных уклонах -3 и +6%.

Решение:

1. Основное удельное сопротивление тепловоза рассчитываем по формуле: При $v = 0 - 10 \kappa \text{м/y}$:

$$\overrightarrow{w_0} = 1.9 + 0.01v + 0.0003v^2 = 1.9 + 0.01 \cdot 10 + 0.0003 \cdot 10^2 = 2.03H/\kappa H.$$

Аналогично рассчитываем значения $\vec{w_0}$ для других скоростей с интервалом 10км/ч. Результаты заносим в таблицу 5.1.

- 2. Основное удельное сопротивление движению четырехосных и восьмиосных вагонов определяем по формулам:
- четырехосного: $m_{BO4} = m_{B4}/4 = 70/4 = 17,5m$;
- восьмиосного: $m_{BOS} = m_{BS} / 8 = 160 / 8 = 20m$.

					ПЗ.МДК.01.02.23.02.06.01.
Изм.	Лист	№ докум	Подпись	Дата	· ·

.ПЗ.

Для $v = 10 \kappa M / 4$ и четырехосных вагонов на роликовых подшипниках:

$$\tilde{w_{o4p}} = 0.7 + \frac{3 + 0.1 \cdot v + 0.0025 v^2}{m_{BO4}} = 0.7 + \frac{3 + 0.1 \cdot 10 + 0.0025 \cdot 10^2}{17.5} = 0.94 H / \kappa H.$$

Аналогично для восьмиосных вагонов с роликовыми подшипниками:

$$\tilde{w_{o8p}} = 0.7 + \frac{6 + 0.038 \cdot v + 0.0021 v^2}{m_{BO8}} = 0.7 + \frac{3 + 0.038 \cdot 10 + 0.0021 \cdot 10^2}{20} = 1.03 H / \kappa H.$$

Для состава:

$$\tilde{w_o} = \frac{70 \cdot \tilde{w_{o4p}} + 30 \cdot \tilde{w_{o8p}}}{m_{BO8}} = \frac{70 \cdot 0.94 + 30 \cdot 1.03}{100} = 0.97 H / \kappa H.$$

Результаты расчетов сводим в таблицу 5.1

Таблица 5.1

v, км/ч	$\overrightarrow{w_0}$, $H/\kappa H$	$\widetilde{w_{04p}}, H/\kappa H$	$\widetilde{w_{08p}}, H/\kappa H$	$\widetilde{w_0}$, $H/\kappa H$	$W_0, H/\kappa H$	$w_0 - 3\%_o$,	$w_0 + 6\%_o$,
						$H/\kappa H$	$H/\kappa H$
1	2	3	4	5	6	7	8
0-10	2,03	0,94	1,03	0,97	1,04	-1,96	7,04
20							
30							
40							
50							
60							
70							
80							
90							
100							

3. Основное удельное сопротивление движению поезда рассчитываем по формуле: Так, при $v = 10 \kappa M/4$ получим:

$$w_O = \frac{\dot{w_0}m_{\pi} + \dot{w_0}m_c}{m} = \frac{2,03 \cdot 276 + 0,97 \cdot 4000}{4276} = 1,04H/\kappa H.$$

					ПЗ.МДК.01.0
Изм.	Лист	№ докум.	Подпись	Дата	

4. Общее удельное сопротивление движению на спуске рассчитываем по формуле: При $v=10\kappa M/4$ и i=-3% о

$$W_k = W_O + W_{\mathcal{I}} = 1,04 + (-3) = -1,96H/\kappa H.$$

Аналогично для подъема 6 ‰:

$$W_k = W_O + W_{\mathcal{I}} = 1,04 + 6 = 7,04H/\kappa H.$$

Все полученные значения заносим в таблицу 5.1.

I					
I	Изм.	Лист	№ докум.	Подпись	Дата

Расчёт тормозной силы поезда

Цель занятия: Научиться производить расчёт общего сопротивления движению поезда и строить кривую удельных замедляющих сил

Исходные данные:			

Порядок выполнения занятия:

Определить расчетный тормозной коэффициент, тормозную и удельную тормозную силы поезда, ведомого тепловозом 2ТЭ116 при скорости 70 км/ч и движении по участку со спусками менее 20 ‰. Состав имеет массу 4500 т, сформирован из 110 четырехосных вагонов. Стандартными чугунными колодками оборудованы 55 вагонов, в том числе на 30 груженых вагонов тормоза включены на груженый режим, на 25 порожних вагонах — на порожний режим. Кроме того 20 груженых вагонов с массой груза более 6 т, приходящейся на одну ось, оборудованы композиционными колодками, их тормоза включены на средний режим.

Решение:

1. Поскольку грузовой поезд следует по участку со спусками до 20 % массу состава и развиваемую им тормозную силу в расчетах не учитываем. Расчетные силы нажатия K_n берем из таблицы 6.1.

Таблица 6.1

Тип вагона	Расчетная сила нажатия тормозных колодок на ось K_p , кH, при режимах			
	груженом	среднем	порожнем	
Грузовые вагоны, оборудованные	69	49	34	
чугунными тормозными колодками				
Грузовые вагоны, оборудованные	84	69	34	
композиционными тормозными				
колодками (в пересчете на чугунные				
колодки)				
Вагоны рефрижераторного подвижного	88	59	34	
состава с чугунными тормозными				
колодками				

Изм.	Лист	№ докум.	Подпись	Дата

2. Расчетная сила нажатия стандартных чугунных колодок на 30 груженых вагонах будет равна:

$$\sum K_{p.ep} = 30 \cdot 4 \cdot 69 = 8280 \kappa H.$$

3. Расчетная сила нажатия стандартных чугунных колодок на 25 порожних вагонах будет равна:

$$\sum K_{p.nop} = 25 \cdot 4 \cdot 34 = 3400 \kappa H.$$

4. С учетом пересчета с композиционных колодок на чугунные расчетная сила нажатия на 20 вагонах на среднем режиме тормозов будет равна:

$$\sum K_{p.cp} = 20 \cdot 4 \cdot 69 = 5520 \kappa H.$$

5. Суммарная расчетная сила нажатия в поезде будет равна:

$$\sum K_p = 8280 + 3400 + 5520 = 17200 \kappa H.$$

6. Расчетный тормозной коэффициент состава определяем по формуле:

$$\theta_p = \frac{\sum K_p}{m_c \cdot g} = \frac{17200}{4500 \cdot 9,81} = 0,39$$

7. Расчетный коэффициент трения чугунных колодок о колеса берем из таблицы 6.2

Таблица 6.2 Значение расчетного коэффициента трения ϕ_{*p} тормозных колодок

Скорость υ, км/ч	Чугунные	Композици- онные
0	0,270	0,360
10	0,198	0,339
20	0,162	0,332
30	0,140	0,309
40	0.126	0,297
50	0.116	0,288
60	0,108	0,280
70	0,102	0,273
80	0,097	0,267

Скорость <i>v</i> , км/ч	Чугунные	Композици- онные
90	0,093	0,262
100	0,090	0,257
110	0,087	0,253
120	0,085	0,249
130	0,083	0,246
140	0,081	0,242
150	0,079	0,240
160	0,077	0,237
	1	V

Изм.	Лист	№ докум.	Подпись	Дата

8. Удельную тормозную силу поезда определяем по формуле:

$$b_T = 1000 \cdot \varphi_{kp} \cdot \vartheta_p = 1000 \cdot 0,102 \cdot 0,39 = 39,8H/\kappa H.$$

9. Тормозную силу поезда определяем по формуле:

$$B_T = 1000 \cdot \varphi_{kp} \cdot \sum K_p = 1000 \cdot 0,102 \cdot 17200 = 1754000 H = 1754 \kappa H.$$

Тормозную силу поезда можно также рассчитать используя формулу:

$$B_T = b_T \cdot m_{\pi} \cdot g = 39.8 \cdot 4500.81 = 1757 \kappa H.$$

Получены практически одинаковые результаты. Ничтожное расхождение их получено за счет округления чисел.

Изм.	Лист	№ докум.	Подпись	Дата

Расчёт и построение диаграммы удельных ускоряющих и замедляющих сил

Цель занятия: Научиться рассчитывать и строить диаграммы удельных ускоряющих и замедляющих сил

Исходные данные:		

Порядок выполнения занятия:

Определить удельные ускоряющие силы в режиме тяги и замедляющие в режимах выбега и служебного механического торможения поезда, состоящего из восьмиосного электровоза ВЛ80с массой 192 т и состава массой 5000 т, при движении по звеньевому пути. Состав сформирован из четырехосных груженых вагонов на роликовых подшипниках средней массой каждого вагона $m_{{}_{B4p}} = 70 m\,\mathrm{U}$ восьмиосных вагонов на роликовых подшипниках с массой $m_{{\it B8p}} = 160 m$. Соотношение вагонов: 70% — четырехосных и 30% — восьмиосных. После разгона электровоз работает на 33-й позиции при возбуждении НВ, OB1, OB2. Вагоны состава оборудованы стандартными чугунными колодками $((\theta_n = 0.4))$. Поезд следует по участку со спусками менее 20 ‰. По данным расчетов построить диаграмму удельных ускоряющих и замедляющих сил для всех режимов работы.

Решение:

1. Основное удельное сопротивление движению состава рассчитаем при скоростях, кратных 10 км/ч, и при скоростях выхода на характеристику нормального возбуждения НВ и перехода на характеристики ослабленного возбуждения *OB1* и *OB2*. (см. графу 1 таблицы 7.1).

Изм.	Лист	№ докум.	Подпись	Дата

v,км/ч	$\hat{w_0}, H/\kappa H$	$\widetilde{w_{04p}}, H/\kappa H$	$\widetilde{w_{08p}}, H/\kappa H$	$\tilde{w_0}, H/\kappa H$	$w_0, H/\kappa H$
1	2	3	4	5	6
0					
10					
20					
30					
40					
49,5					
51,5					
54,5					
60					
70					
80					
90					
100					
110					

1.1 Основное удельное сопротивление движению четырехосных груженых вагонов на роликовых подшипниках при движении по звеньевому пути рассчитываем по формуле: Для $v = 49,5 \kappa M/V$

$$\tilde{w_{o4p}} = 0.7 + \frac{3 + 0.1 \cdot v + 0.0025 v^2}{m_{BO4}} = 0.7 + \frac{3 + 0.1 \cdot 49.5 + 0.0025 \cdot 49.5^2}{70/4} = 1.50 H / \kappa H.$$

1.2 Основное удельное сопротивление движению восьмиосных груженых вагонов определяем по формуле: Для $v = 49,5\kappa_M/u$

$$\tilde{w_{o8p}} = 0.7 + \frac{6 + 0.038 \cdot v + 0.0021 v^{2}}{m_{BO8}} = 0.7 + \frac{3 + 0.038 \cdot 49.5 + 0.0021 \cdot 49.5^{2}}{20} = 1.35 H / \kappa H.$$

1.3 Основное удельное сопротивление движению состава определяем по формуле: Для $v=49,5\kappa m/u$

$$\widetilde{w_o} = \frac{70 \cdot \widetilde{w_{o4p}} + 30 \cdot \widetilde{w_{o8p}}}{m_{BO8}} = \frac{70 \cdot 1,50 + 30 \cdot 1,35}{100} = 1,46H / \kappa H.$$

Изм.	Лист	№ докум.	Подпись	Дата

ПЗ.МДК.01.02.23.02.06.01. .ПЗ.

- 2. Основное удельное сопротивление движению поезда в режиме тяги рассчитываем для тех же точек.
- 2.1 Основное удельное сопротивление движению локомотива рассчитываем по формуле: Так, при $v = 49,5\kappa M/V$

$$\overrightarrow{w_0} = 1.9 + 0.01 \cdot v + 0.0003 \cdot v^2 = 1.9 + 0.01 \cdot 49.5 + 0.0003 \cdot 49.5^2 = 3.13H / \kappa H.$$

2.2 Основное удельное сопротивление движению поезда определяем по формуле: Например, при $v = 49.5 \kappa m/v$

$$w_0 = \frac{\overrightarrow{w_0} \cdot m_{_{\mathcal{I}}} + \overrightarrow{w_0} \cdot m_{_{c}}}{m} = \frac{3,13 \cdot 192 + 1,46 \cdot 5000}{5192} = 1,52H / \kappa H.$$

Результаты расчетов по пунктам 1 и 2 заносим в таблицу 8, а значения w_0 заносим в графу 2 таблицы 7.2.

Таблица 7.2

v,км/ч	$W_0, H/\kappa H$		$F_k, \kappa H$		J	$f_k, H/\kappa H$	H	f_{k}	$-w_0,H/$	кН
		НВ	OB1	OB2	НВ	OB1	OB2	НВ	OB1	OB2
1	2	3	4	5	6	7	8	9	10	11
0										
10										
20										
30										
40										
49,5										
51,5										
54,5										
60										
70										
80										
90										
100										
110										

- 3. Расчет удельных ускоряющих сил в режиме тяги выполняем следующим образом
- 3.1 Удельные силы тяги рассчитываем по тяговым характеристикам электровоза **ВЛ80с** (см. рис. 7.1) при заданных режимах. При разгоне используем штрихпунктирную ограничивающую линию A₁S₁ на тяговых характеристиках.

Изм.	Лист	№ докум.	Подпись	Дата

ПЗ.МДК.01.02.23.02.06.01. .ПЗ.

ист

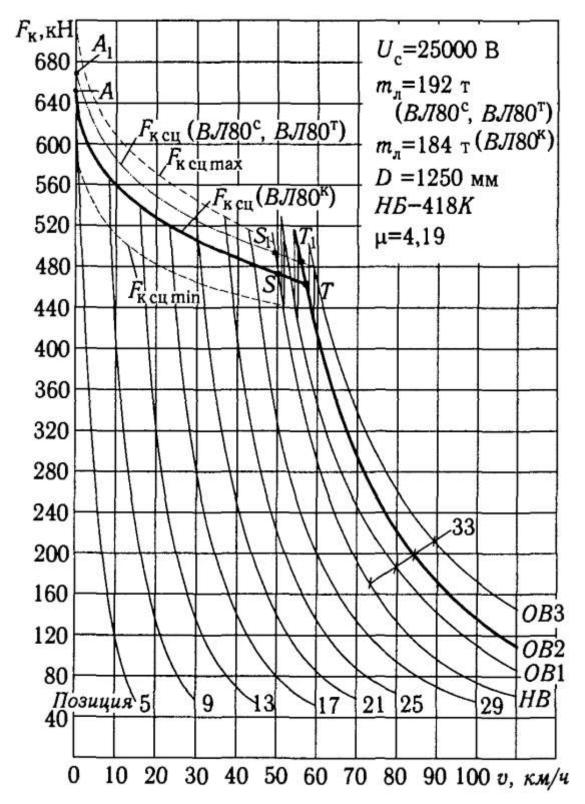


Рис. 7.1 Тяговые характеристики электровозов ВЛ80с, ВЛ80т, ВЛ80к

Так при $v = 10\kappa M/4$ сила тяги $F_k = 584\kappa H$. Удельную силу тяги определяем по формуле:

$$f_k = F_k / mg = 584000 / (5192 \cdot 9.81) = 11.47 H / \kappa H.$$

							лист
					ПЗ.МДК.01.02.23.02.06.01.	.ПЗ.	
Изм.	Лист	No dokum	Подпись	Лата			

 $3.2~{
m V}$ дельные ускоряющие силы определяем вычитанием из $f_{\it k}$ значений $w_{\it 0}$. При $v=10\kappa {\it m/u}$

$$f_y = f_k - w_0 = 11,47 - 1,01 = 10,46H / \kappa H.$$

Результаты расчетов необходимо свести в таблицу 7.2 и по ним необходимо построить диаграмму удельных ускоряющих сил при тяге. Образец приведен на рисунке 7.2

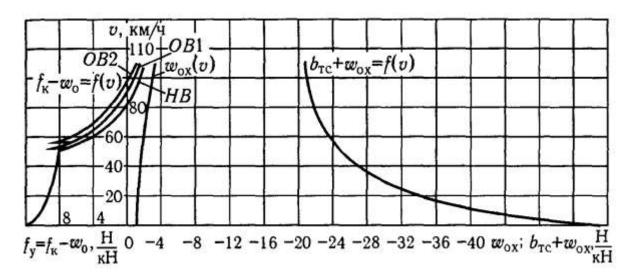


Рис. 7.2 Диаграмма удельных ускоряющих и замедляющих сил поезда с электровозом ВЛ80с и составом массой 5000 т

- 4. Расчет основного удельного сопротивления движению поезда на выбеге проведем для скоростей через интервалы 10 км/ч.
- 4.1 Основное удельное сопротивление движению электровоза (без тока) определяем по формуле:

$$w_x = 2.4 + 0.011v + 0.00035v^2 = 2.4 + 0.011 \cdot 10 + 0.00035 \cdot 10^2 = 2.55H / \kappa H.$$

4.2 Основное удельное сопротивление движению состава берем из графы 5 таблицы 7.1 и рассчитываем по формуле: Например, при $v = 10\kappa M/v$.

$$w_{ox} = \frac{w_x m_{\pi} + w_o m_c}{m} = \frac{2,55 \cdot 192 + 0,97 \cdot 5000}{5192} = 1,03H/\kappa H.$$

Результаты расчетов заносим в графы 2 и 4 таблицы 7.3 и строим диаграмму удельных замедляющих сил при выбеге на рисунке 7.2.

					ПЗ.МДК.01.02.23.02.06.01.	.ПЗ
Изм	Пист	No down	Подпись	Лата	· ·	

Таблица 7.3

v, км/ч	$w_x, H/\kappa H$	$\tilde{w_0}, H/\kappa H$	W_{ox} , $H/\kappa H$	$arphi_{\kappa p}$	b_{TC} , $H/\kappa H$	f_{3C} , $H/\kappa H$
1	2	3	4	5	6	7
0						
10						
20						
30						
40						
49,5						
51,5						
54,5						
60						
70						
80						
90						
100						
110						

- 5. Замедляющие силы при служебном торможении рассчитываем следующим образом.
- 5.1 Расчетный коэффициент трения чугунных колодок о бандажи $\varphi_{\kappa p}$ определяем по формуле: При $v=10\kappa M/4$

$$\varphi_{\kappa p} = 0.27 \cdot \frac{v + 100}{5v + 100} = 0.27 \cdot \frac{10 + 100}{5 \cdot 10 + 100} = 0.198.$$

5.2~Удельную тормозную силу для служебного торможения b_{TC} равна 0.5 от расчетной тормозной силы, определяем по формуле: Так, при $v = 10 \kappa M/V$

$$b_{TC} = 0.5 \cdot 1000 \cdot \varphi_{kp} \cdot \vartheta_p = 0.5 \cdot 1000 \cdot 0.198 \cdot 0.4 = 39.6 H / \kappa H.$$

5.3 Удельные замедляющие силы при служебном торможении определяем по формуле $f_{3C} = -f_y = b_{TC} + w_{ox}$. Основное удельное сопротивление движению поезда выбираем из графы 4 таблицы 7.3. При $v = 10\kappa m/q$

$$f_{3C} = 39.6 + 1.03 = 40.63 H / \kappa H.$$

Результаты расчетов сводим в таблицу 7.3 и строим диаграмму удельных замедляющих сил при служебном торможении (см. рис. 7.2).

Вывод:_____

Изм.	Лист	№ докум.	Подпись	Дата

Построение кривой скорости в режиме разгона поезда аналитическим способом

Цель занятия: Научиться строить кривые скорости в режиме разгона поезда аналитическим и графическим способом

Исходные данные:	

Порядок выполнения занятия:

Определить путь, проходимый грузовым поездом, удельные ускоряющие силы для которого приведены на рисунке 7.2 и в таблице 7.2 (ПЗ 7), в период разгона на станции при i=0 от 0 до 49,5 км/ч и необходимое для этого время.

Решение:

- 1. Интервалы скорости Δv принимаем равным 10 км/ч.
- 1.1 При изменении скорости в пределах 0....10 км/ч среднее значение удельной ускоряющей силы будет равно:

$$f_{y,cp1} = \frac{(f_k - w_o)_{v=0} + (f_k - w_o)_{v=10}}{2} = \frac{12,30 + 10,46}{2} = 11,38H/\kappa H.$$

По формулам
$$\Delta t = \Delta v/(2f_{y,cp})$$
, $\Delta s = \frac{4,17(v_2^2 - v_1^2)}{f_{y,cp}}$ получим:

$$\Delta t_1 = 10/(2 \cdot 11,38) = 0,44$$
 muH;
 $\Delta s_1 = 4,17 \cdot (10^2 - 0)/11,38 = 36,6$ *m*.

Изм.	Лист	№ докум	Подпись	Дата

1.2 При изменении скорости от 10 до 20 км/ч:

$$f_{y.cp2} = \frac{(f_k - w_o)_{v=10} + (f_k - w_o)_{v=20}}{2} = \frac{10,46 + 9,72}{2} = 10,09 H / \kappa H.$$

$$\Delta t_2 = 10/(2 \cdot 10,09) = 0,50$$
 мин;
 $\Delta s_1 = 4,17 \cdot (20^2 - 10)/10,09 = 124$ м.

1.3 При изменении скорости от 20 до 30 км/ч:

$$f_{y,cp3} = \frac{(f_k - w_o)_{v=20} + (f_k - w_o)_{v=30}}{2} = \frac{9,72 + 9,11}{2} = 9,42H/\kappa H.$$

$$\Delta t_3 = 10/(2 \cdot 9,42) = 0,53$$
 мин,
 $\Delta s_3 = 4,17 \cdot (30^2 - 20)/9,42 = 221,3$ м.

1.4 При изменении скорости от 30 до 40 км/ч:

$$f_{y.cp4} = \frac{(f_k - w_o)_{v=30} + (f_k - w_o)_{v=40}}{2} = \frac{9,11 + 8,64}{2} = 8,88H / \kappa H.$$

$$\Delta t_4 = 10/(2 \cdot 8,88) = 0,56$$
 мин;
 $\Delta s_4 = 4,17 \cdot (40^2 - 30)/8,88 = 328,7$ м.

1.5 При изменении скорости от 40 до 49,5 км/ч:

$$f_{y.cp5} = \frac{(f_k - w_o)_{v=40} + (f_k - w_o)_{v=49,5}}{2} = \frac{8,64 + 8,12}{2} = 8,38H/\kappa H.$$

$$\Delta t_5 = 10/(2 \cdot 8,38) = 0,57$$
 мин,
 $\Delta s_5 = 4,17 \cdot (49,9^2 - 40) / 8,38 = 423$ м.

1.6 Время разгона поезда:

$$\Delta t = \Delta t_1 + \Delta t_2 + \Delta t_3 + \Delta t_4 + \Delta t_5 = 0,44 + 0,50 + 0,53 + 0,56 + 0,57 = 2,6$$
 мин.

1.7 Путь, который пройдет поезд при разгоне:

$$\Delta s = \Delta s_1 + \Delta s_2 + \Delta s_3 + \Delta s_4 + \Delta s_5 = 36.6 + 124 + 221.3 + 328.7 + 423 = 1134 \text{ m}.$$

					ПЗ.МДК.01.02.23.02.06.01.	.ПЗ.
Иэм	Пист	No down	Подпись	Пата	, ,	

Полученные значения $\Delta v, \Delta t, \Delta s$ показаны на графиках v(t) (рисунок 8.1 а), v(s) (рисунок 8.1 б), t(s) (рисунок 8.1 в).

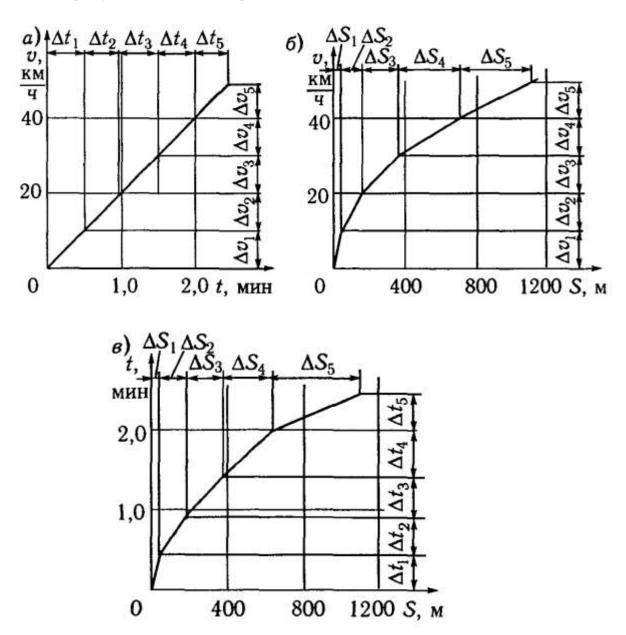


Рис. 8.1 Кривые, построенные на основании расчетов аналитическим методом

Вывод:

			·	
Изм.	Лист	№ докум.	Подпись	Дата

Решение тормозных задач аналитическим методом и решение первой тормозной задачи графическим методом

Цель занятия: Научиться решать тормозные задачи аналитическим методом

Исходные данные:		

Порядок выполнения занятия:

- 1. Определить тормозной путь при экстренном торможении грузового поезда, состоящего из электровоза с массой т и состав массой т, сформированного из четырехосных, шестиосных и восьмиосных груженых вагонов, на спуске $i_{min} = \%$ со скорости км/ч до остановки. Состав оборудован стандартными чугунными колодками при движении поезда по звеньевому пути.
- 1.1 Определяем число осей в составе по формуле:

$$n_c = \frac{p_8 \cdot m_c}{100 \cdot m_{eo8}} + \frac{p_6 \cdot m_c}{100 \cdot m_{eo6}} + \frac{p_4 \cdot m_c}{100 \cdot m_{eo4}},$$

1.2 Определяем время подготовки тормозов t_n по формуле:

$$t_n = 10 - \frac{15 \cdot i}{1000 \cdot \upsilon_p \cdot \varphi_{\kappa p}},$$

1.3 Подготовительный тормозной путь рассчитываем по формуле:

$$S_n = 0,278 \cdot V_{_H} \cdot t_{_n},$$

2. Основное удельное сопротивление движению локомотива рассчитываем по формуле:

Изм.	Лист	№ докум.	Подпись	Дата

$$\omega_{\rm x} = 2,4+0,011 \cdot V + 0,00035 \cdot V^2$$

2.2 Сопротивление движению состава при V_{cp} в каждом интервале скоростей определяем по формуле:

$$\omega''_{04p} = 0,7 + \frac{3 + 0,1 \cdot V + 0,0025 \cdot V^2}{m_{604p}}$$

$$\omega_{06p}'' = 0,7 + \frac{8 + 0,08 \cdot V + 0,002 \cdot V^{2}}{m_{606p}}$$

$$\omega_{08p}'' = 0,7 + \frac{6 + 0,038 \cdot V + 0,0021 \cdot V^{2}}{m_{608p}}$$

$$W_o'' = \frac{p_{4p} \cdot \omega_{04p}'' + p_{6p} \cdot \omega_{06p}'' + p_{8p} \cdot \omega_{08p}''}{100}$$

2.3 Основное удельное сопротивление движению поезда определяем по формуле:

$$\omega_{ox} = \frac{\omega_x \cdot m_{_{\scriptscriptstyle B}} + \omega_o'' \cdot m_{_{\scriptscriptstyle C}}}{m}$$

2.4 Расчётный коэффициент трения чугунных колодок о колёса определяем по формуле:

$$\varphi_{\kappa p} = 0.27 \cdot \frac{V + 100}{5 \cdot V + 100}$$

2.5 Удельную тормозную силу рассчитываем по формуле:

$$\boldsymbol{e}_{T} = 1000 \cdot \boldsymbol{v}_{p} \cdot \boldsymbol{\varphi}_{\kappa p}$$

Изм.	Лист	№ докум.	Подпись	Дата

2.6 Отрезки тормозного пути ΔS в каждом интервале скоростей определяем, используя формулу:

$$\Delta S = \frac{500 \cdot (V_{2}^{2} - V_{1}^{2})}{\zeta \cdot (e_{T} + \omega_{ox} + i)}$$

2.7 Действительный тормозной путь:

$$S_{\mathcal{A}} = \sum \Delta S$$

3. Тормозной путь определяем по формуле:

$$S_T = S_n + S_{\mathcal{A}}$$

Изм.	Лист	№ докум.	Подпись	Дата

Построение кривых тока

Цель: Научиться строить кривые тока.

Исходные данные: 1) Локомотив – согласно заданного варианта

2) Токовая характеристика локомотива –

Порядок выполнения занятия::

1. По заданной кривой V(S) и токовой характеристике локомотива — построить кривую тока, потребляемого этим локомотивом, в функции пути $I_{\mathfrak{I}}(S)$, при разгоне поезда

До расчётной скорости (км\час).

2. Заполнить таблицу 9, с данными скорости и соответствующего этой скорости тока.

Ход занятия::

Формулы и порядок расчётов брать из учебника С.И Осипов, С.С. Осипов «Основы тяги поездов» 2000 года издания. Стр. 353-359

Изм.	Лист	№ докум.	Подпись	Дата

Проверка расчётной массы состава по условию нагрева электрических машин локомотива.

Цель: Научиться проверять расчётную массу состава по условию нагрева эл. машин локомотива.

2)
$$t_{HB} = {}^{o}C$$

3)
$$T =$$

Порядок выполнения занятия:

Определить превышение t обмоток ТЭД аналитическим методом при расчётной t окружающего воздуха в летний период $t_{HB} = {}^{o}C$. Начальное превышение t двигателей τ_{o} принимаем равным ${}^{o}C$.

Ход занятия:

Формулы и порядок расчётов брать из учебника С.И Осипов, С.С. Осипов «Основы тяги поездов» 2000 года издания. СТР. 371-372

Изм.	Лист	№ докум.	Подпись	Дата

Аналитический метод определения расхода электрической энергии и топлива.

Цель: Научиться определять аналитическим методом расход электрической энергии и топлива.

согласно заданного варианта для электровозов и тепловозов.

Исходные данные: 1) Локомотив – , массой – т.

2) Macca состава – т.

3) Длина участка разгона поезда S = км

Порядок выполнения занятия:

1. Определить расход электрической энергии без учёта колебаний напряжения ($K_U = 1$) по формуле:

$$A_{T} = \frac{U_{c} \cdot K_{u} \cdot I_{dacp} \cdot \Delta t}{60 \cdot 1000}, \text{ kBt}$$

2. Определяем средний ток

$$I_{dacp} = \frac{1}{2}$$
, A

3. Расход электрической энергии на собственные нужды электровоза –

$$A_{CH} = 5, 5 \cdot t$$
, кВт ч

4. Расход электрической энергии электровоза с учётом собственных нужд

$$A_{C} = A_{T} + A_{CH}$$

5. Удельный расход электрической энергии определяем по формуле:

$$a = \frac{1000 \cdot A_C}{m_c \cdot S}$$

6. Без учёта собственных нужд

$$a = \frac{1000 \cdot A_T}{m_c \cdot S}$$

Определение общего и удельного расхода натурального и условного топлива выполнять по примеру на стр.401-402.

Ход занятия:

лист

Формулы и порядок расчётов брать из учебника С.И Осипов, С.С. Осипов «Основы тяги поездов» 2000 года издания.

					ПЗ.МДК.01.02.23.02.06.01.	.ПЗ.
Изм.	Лист	№ докум.	Подпись	Дата	r 1	

Подготовка локомотива к работе и выезд из депо.

Цель: Изучить подготовку локомотива к работе и выезду из депо.

Порядок выполнения занятия:

- 1. Общие сведения
- 2. Подготовка локомотива в рабочие состояние
- 3. Подготовка тормозного оборудования
- 4. Выезд из депо.

Ход занятия::

Управление локомотивами и их обслуживание брать из учебника С.И Осипов, С.С. Осипов стр. 453 «Основы тяги поездов» 2000 года издания.

Изм.	Лист	№ докум.	Подпись	Дата

Общие требования к безопасным методам труда локомотивных бригад, при нахожденбии на подвижном составе.

Цель: Изучить общие требования к безопасным методам труда локомотивных бригад, при нахожден6ии на подвижном составе.

.

Порядок выполнения занятия:

- 1. Организация работ по технике безопасности.
- 2. Общие меры безопасности.
- 3. Меры безопасности при эксплуатации электровозов.
- 4. Меры безопасности при обслуживании тепловозов и дизель поездов
- 5. Сделать вывод.

Ход занятия::

Управление локомотивами и их обслуживание брать из учебника С.И Осипов, С.С. Осипов стр. 522-532 «Основы тяги поездов» 2000 года издания.

Изм.	Лист	№ докум.	Подпись	Дата

Изучение основных неисправностей тягового подвижного состава и их устранение.

Цель: Изучить основные неисправности тягового подвижного состава и их устранение.

Порядок выполнения занятия:

- 1. Неисправности электрических машин и аппаратов.
- 2. Неисправности в электрических цепях.
- 3. Обнаружение неисправностей в электрических цепях.
- 4. Сделать вывод.

Ход занятия:

Управление локомотивами и их обслуживание брать из учебника С.И Осипов, С.С. Осипов стр. 506-514 «Основы тяги поездов» 2000 года издания.

Изм.	Лист	№ докум.	Подпись	Дата